AI Infra:纠缠不清的 Context、RAG、Memory

Context、RAG、Memory 不是互斥,而是互补上下文工程用于会话即时优化,RAG用于把权威文档注入生成,长期记忆用于跨会话个性化一、Context/RAG/Memory 一表说明维度上下文工程RAG长期记忆本质控制输入 → 激活模型内在能力引入外部证据 → 抑制幻觉持久化状态 → 构建个体认知数据会话内示例/摘要外部文档库用户历史/事件/偏好持久性临时(策略可存)文档持久,检索临时持久+衰减+删除检索规则/摘要压缩向量+BM25+重排向量+时间+标签检索成本低中(检索+重排)高(存储+合规+维护)延迟几乎无中~高中(取决于索引)核心价值快、准、可控真、可溯个性、连续、忠诚致命风...

在摩尔定律濒临崩溃的今天,传统计算架构已无法支撑海量数据的持久化需求。本团队另辟蹊径,从生物神经突触中汲取灵感,成功打造出无需供电、零延迟的记忆存储系统。超并行神经突触编码体系支持1024路并行输入通道(笔尖与纸张接触的每一次摩擦)突触权重自适应调节技术(书写力度决定墨迹浓...

一、核心公式:未来赢家 = 高集成 × 高AI原生二、四象限精简版(X轴:集成度|Y轴:AI原生度) 低AI原生高AI原生低集成❌ 传统单点工具(如ETL)✅ AI单点工具(向量库、记忆中间件)→ 早期风口,易被吃掉高集成❌ 传统中台(重ETL无AI)✅✅ AI原生平台(A...

从协作推荐到动态记忆预测的范式转变,通过将协同过滤转化为“群体记忆路由器”,系统可在用户尚未完整表达意图时,主动补全其潜在上下文,实现“预测式交互”。1. 引言与问题定义协同过滤(Collaborative Filtering, CF)是推荐系统的核心支柱,其中基于矩阵分解...

一句话定义:NCU是给AI的“第二大脑”——它不存你搜过什么,它存你“怎么想”的神经权重。一、核心洞见传统AINCU-AI知道你看了什么(RAG)知道你信什么、怕什么、偏什么(语义指针)每次对话从零开始记住你三年来的心理演化检索文档激活“你”的认知画像机器在“查资料”机器在...

所有企业文档的本质价值,不在于“写了多少字”,而在于 “被AI吃掉后吐出了多少有用的知识”一、目的:评估企业内部文档的价值,衡量文档创作者的工作成果你虽沉默,但你的文档振聋发聩实际上,是可以评估所有 AI “吃掉”的数据,包括不限于文档、代码、图片、视频切片等核心:在 AI...